Solar panels work by absorbing sunlight with photovoltaic cells, generating direct current (DC) energy and then converting it to usable alternating current (AC) energy with the help of inverter technology. AC energy then flows through the home’s electrical panel and is distributed accordingly.

Here are the main steps for how solar panels work for your home:

  1. Photovoltaic cells absorb the sun’s energy and convert it to DC electricity
  2. The solar inverter converts DC electricity from your solar modules to AC electricity, which is used by most home appliances
  3. Electricity flows through your home, powering electronic devices
  4. Excess electricity produced by solar panels is fed to the electric grid

Here’s a quick video explaining how solar panels work to generate electricity for your home:

How do solar panels work to generate electricity?

A standard solar panel (also known as a solar module) consists of a layer of silicon cells, a metal frame, a glass casing, and various wiring to allow current to flow from the silicon cells. Silicon (atomic #14 on the periodic table) is a nonmetal with conductive properties that allow it to absorb and convert sunlight into electricity. When light interacts with a silicon cell, it causes electrons to be set into motion, which initiates a flow of electric current. This is known as the “photovoltaic effect,” and it describes the general functionality of solar panel technology.

The photovoltaic effect

The science of generating electricity with solar panels boils down to the photovoltaic effect. It was first discovered in 1839 by Edmond Becquerel and can be generally thought of as a characteristic of certain materials (known as semiconductors) that allows them to generate an electric current when exposed to sunlight.

The photovoltaic process works through the following simplified steps:

  1. The silicon photovoltaic solar cell absorbs solar radiation
  2. When the sun’s rays interact with the silicon cell, electrons begin to move, creating a flow of electric current
  3. Wires capture and feed this direct current (DC) electricity to a solar inverter to be converted to alternating current (AC) electricity